

Requirements, Goals and Challenges for an X-Ray Microcalorimeter Spectrometer on the Constellation-X Observatory Richard L. Kelley, NASA/Goddard Space Flight Center, for the Constellation-X Team

X-Ray Microcalorimeters:

Measuring energy by the thermalization of individual photons.

Integrated Product Development Team founded in 1998 in response to NRA: Five groups selected for initial period of R&D funding:

Goddard, NIST and SAO - A comprehensive approach for developing microcalorimeters. Implanted Si, TES, and NTD Ge.

Stanford University - Tungsten Transition-Edge Sensors for Constellation Soft X-Ray Detector with Ge absorbers

Lawrence Livermore National Lab - High resolution X-ray microcalorimeter detectors with multilayer absorbers and multilayer transition-edge sensors

Trace to Top-Level Mission **XMS Performance Requirement** 0.6 - 10 keV Spectral resolving power 1500 at 6 keV Angular resolution Oversample SXT PSF by a factor of 3 2.5 arcmin **Derived Detector Requirements** Derivation 242 µm Meets TLRD beam sampling requirement Pixel size Gives 2.7 arcmin FOV vs. 2.5 arcmin Number of pixels 4 eV at 6 keV; 2 eV at 1 keV Gives $E/\Delta E = 1500$ at 6 keV 95% Intrinsic quantum efficiency Flowdown to meet effective area req. <300 µsec pulse decay time Allocation to meet absolute timing req. **Derived Instrument Requirements** Mass Current engineering estimate For analog, digital, CADR control electronics 150/200 (BOL/EOL)

Constellation-X Microcalorimeter Technology

Semiconductor Thermometer (Doped Ge or Si)

Temperature

Currently can determine the energy of a single x-ray photon to a part in 2000!

First x-ray microcalorimeter in space (1995.) Brief suborbital flight produced spectrum of soft x-ray background

Each linear array module is fitted with a miniature connector attached to the bottom of the sapphire substrate through which the electrical signals are

Data rate (avg/peak

Each module is inserted into a mating connector mounted into a quadrant base. A twodimensional array can be built up from a series of these stacked linear arrays.

Average source rate plus 840 bps H/K data

Peak rate from bright sources limit

0.35 mm x 0.35 mm x 7 μm tin absorber + NTD 17 Ge thermistor (E. Silver et al.)

Ion-implanted Si w/HgTe absorbers

8 Channel

MUX

7.2/640 kbps

TES x-ray microcalorimeter

Transition at ~ 100 mK and only about 1 mK wide.

5.88

energy resolution 3.4 eV

Energy E_{γ} (keV)

5.91

PTB, Berlin, Germany

Goddard

Constellation-X Cooling Technologies

1000 pixel array

Technology Readiness Reference Design:

- 32 x 32 TES microcalorimeter array
- MUX SQUID readout
- Continuous ADR
- Cryocoolers

Multiplexed SQUID readout: enables larger arrays and low power dissipation

Steady Energy Resolution Progress! Semiconductor thermistors Superconducting tunnel junctions 9.2 eV* 6 eV 4.8 eV* 1995 2000 ionization detectors

Simultaneous channels	32	1	8 channels 4 pixels	16	96	1024		
Component technologies		TES, superconducting leads, absorbers	TES, superconducting leads, absorbers, MUX	TES, superconducting leads, absorbers, MUX	Pre-PT components + array heatsinking and high density interconnects, detector stage, faster MUX, signal electronics	Integration with ETU ADR, cryocooler and electronics		
MUX Scale		·	1 x 8	2 x 8	3 x 32 goal	32 x 32		
MUX Speed (open loop bandwidth)			1.5 MHz	3.5 MHz	12 MHz	12 MHz		
Pixel Size	0.64 mm	0.25 mm	0.4 mm	0.25 mm	0.25 mm	0.25 mm		
System Noise				< 2 eV	<1 eV	< 1 eV		
Energy Resolution	4.8 eV @ 6 keV, 50 mK (3.8 @ 6 keV with matched load)	4.8 eV @ 6 keV in flight-like, 2.4 eV @ 6 keV in non-flight	3.7 eV @ 6 keV in field-optimized non-flight pixel	4 eV @ 6 keV	4 eV @ 6 keV 2 eV @ 1 keV	4 eV @ 6 keV 2 eV @ 1 keV		
Component qualification					Radiation, Vibration	System Qualification		
TRL		3.5	3.8	4	5	6		
ADR Roadman								

3 3.3 3.7 4 5 6

Cryogen-free design

Cryocooler

Multi-stage ADRs

Cryocooler development needed for next generation space-based observatories

4-6 K/18 K two-stage cooling Remote coldheads (on deployable structures)

2nd stage SQUIDs

Minimal generated noise (EMI and vibration)

Solution was the Advanced Cryocooler Technology Development Program (ACTDP)

ACTDP requirements driven by three missions James Webb Space Telescope **Terrestrial Planet Finder**

Constellation-X Program designed to provide proven Development Model (DM) coolers in **ACTDP**

Originally funded through TPF, then by TPF, but joint program with Constellation-X and JWST JWST now funding All three coolers at TRL-5 by March '06 downselect

ns	stellation-X
C	One year from instrument selection to TRL-6
lı X	ntegrate with EM Microcalorimeter and ADR in cryostat => EM (MS

Z006 Technology Gates		Т	RL 4		1	RL 5		TRL	. 6				
Milestone	CY	02	CYC	3	CY	04	C	Y05	\perp	CY06		CY	0
Milestone	FY02	2	FY03		FY04		FY0	5	FY	06	F	Y07	7
CTDP Study Phase	▲ A	WD PD	R	Τ									Ī
Preliminary Design				Τ									Ī
Demo Phase Transition				Т									Ī
Mission Integ. Studies				Т		T							Ī
CTDP Demo Phase			AWD	ΔPI	DR	△ D1	TR		TRR	2		PSR	Ī
Design & Devel. Tests				÷		_		H					Ī
Parts Proc. & Fab						+		+]			Ī
Assembly & Integration				Т				-					Ī
Perf. and Char. Tests													I

Element	3-stage CADR	4-stage CADR	4-stage CADR	4-stage CADR	50 mK & 1 K CADR	Breadboard
Number of stages	3	4	4	4	5	5
Heat rejection temperature	1.3 K	4.2 K	4.2 K	4-5 K	6 K	6 K
Operating temperatures	60 mK	50 mK	50 mK	50 mK	50 mK/1 K	50 mK/1 K
Cooling power at 50 mK		6 μ W	6 μ W	> 6 μW	> 6 µW	> 5 μW
Cooling power of "1K" stage					> 0.3 mW	> 0.23 mW
Temperature stability		8 μK rms at 100 mK	8 μK rms at 100 mK	8 μK rms at 50 mK	2 μK rms at 50 mK	2 μK rms above 1 Hz
Mass	18 kg	20 kg	8 kg	8 kg	10 kg	10 kg
Technology goal			High-T stage	Cryocooler, Electronics	6 K magnets, Test with x-ray detectors, Electronics	Environmenta testing
Time frame	FY01	FY02	FY03	FY06	FY07	FY08
TDI	2	2.2	2.7	4	-	c

Cryocooler Roadmap	Cryocooler	Roadmap
--------------------	------------	---------

ilement	State-of-the-Art	ACTDP BB	ACTDP DM	ConX EM	Fligh Baseli
ssor power	120 W	Similar design operating at 240 W	EM at 200 W		200 W
ibe cold head	1 W at 57 K	Multi-stage lab test w/GSE compressor 20 mW at 6 K	EM w/GSE compressor		20 mW at 6 150 mW at

Element	State-of-the-Art	ACTDP BB	ACTDP DM	ConX EM	Flight Baseline
Compressor power	120 W	Similar design operating at 240 W	EM at 200 W		200 W
Pulse tube cold head	1 W at 57 K	Multi-stage lab test w/GSE compressor 20 mW at 6 K	EM w/GSE compressor		20 mW at 6 K 150 mW at 18 k
Control and drive electronics		Brassboard of ripple suppression	Single-box control, power, and ripple suppression		
Testing			Component vibe testing, System functional and TV testing	System level EMI and vibe testing	
Time frame	TES & AIRS flight coolers	FY03	Q2 of FY06	1yr from instrument selection	
Technology Gates		TRL 4	TRL 5	TRL 6	